Europe offshore wind build-out must triple to bring Paris goals within reach

Energypost

To support the Paris Agreement’s goal of limiting temperature increase to 1.5°C, Europe will need a CO2-neutral electricity supply by 2045. A target we cannot meet unless we ramp up Europe’s offshore wind capacity, says Michiel Müller from consultancy Ecofys, a Navigant company.

The company’s energy experts calculated that the current offshore wind installation rate

Construction of Global Tech I wind farm off German coast in 2013
Construction of Global Tech I wind farm off German coast in 2013

would have to triple to get this goal within reach.

They argue that an integrated North Sea Grid is the only way to achieve this growth at lowest possible cost while maximizing benefits to the environment.

To meet the goal agreed at the Paris climate change conference in December 2015, Europe will need a fully decarbonized electricity supply by 2045.

Renewables are essential to making this happen.

The joint energy team of Ecofys and Navigant have investigated Europe’s renewable generation resources and find that offshore wind from the North Seas region will be pivotal for realising a 100% decarbonised electricity supply in less than 30 years.

In their analysis, the experts looked specifically at the ten countries around the North Sea – France, Belgium, the Netherlands, Luxemburg, Germany, Denmark, Sweden, Norway, Ireland, and the United Kingdom – that cooperate in the EU-supported North Seas Countries Offshore Grid Initiative established in 2009.

Such growth in offshore wind cannot be realised through individual efforts—it is possible only through a new level of collaboration, coordination, and interconnectivity between the North Seas countries

To determine the required offshore capacity for the whole region, the team started with the 2045 electricity demand per country and assumed a complete phaseout of fossil-fueled electricity generation, as well as a started retirement of nuclear.

We assumed that current operational nuclear plants will be decommissioned and not replaced after their lifetime. Thus, the only nuclear plants around by 2045 will be new ones that are in an advanced planning stage today.

The Ecofys and Navigant consultants then determined the total available onshore generation capacity by means of several scenario studies and identified how much of the Paris-compatible electricity generation capacity can be met on land.

The countries’ joint onshore generation resources (wind, solar, bio, hydro, and remaining nuclear)could provide up to 55% of the required capacity.

This  leaves 45% to be covered by offshore sources and translates into an  offshore wind target of approximately 230 GW for the North Seas countries. [ 180 GW of that capacity could be generated in the North Sea, and the remaining 50 GW in other seas like the Baltic and Irish Seas and the Atlantic.

With 13 GW installed currently, however, the region is far from the required total. To realise this growth, the offshore wind installation rate would have to triple from the current 3 GW/year to approximately 10 GW/year in 2030.

Long-term spatial planning

Such growth in offshore wind cannot be realised through individual efforts—it is possible only through a new level of collaboration, coordination, and interconnectivity between the North Seas countries.

In addition to its role as a natural habitat, the North Sea is intensely used as a place for fisheries, tourism, military zones, oil & gas infrastructure, and shipping, and therefore of vital importance to the region’s economy.

While there is sufficient space to develop the required offshore wind capacity (current estimates indicate that some 10% of the North Sea surface will be required for offshore wind, based on a wind farm intensity of 5-6MW/km2), a careful balance must be maintained, ensuring maximum benefit to the environment and cost-efficient development of both wind farms and associated infrastructure.

The analysis shows that Great Britain and Ireland have a need for import capacity of roughly 30 GW, while continental North Western Europe has a deficit of 25 GW

Harnessing and preserving the environment of the North Sea region requires constructive collaboration among all sectors. The potential offshore grid could support the marine biodiversity through new protected areas for wildlife and extended migratory corridors.

This requires a shared long-term view by all North Sea countries. A joint spatial planning strategy is needed to reflect changes in use (e.g., decommissioning of oil & gas) and ensure a cost-efficient utilization of the resource, aligned with offshore and onshore grid development and environmental protection.

50 GW-80 GW interconnector capacity required for grid balancing

Long-term planning will also have to go into securing the stability of such new infrastructure. With higher shares of renewable energy, the stability of the grid heavily depends on an increase in flexibility options.

A crucial enabler for a flexible power system is a well-developed network, or in the case of the North Sea offshore wind-dominated system, an infrastructure with increased levels of interconnectivity.

Based on a high level adequacy assessment, we determined the likely reliable capacity that would be available. Ecofys investigated peak demand situations for the three sub-systems around the North Sea: Great Britain and Ireland, continental Northwestern Europe, and the Nordics.

The team analysed how much wind power is available at minimum wind conditions with regard to climatic data and the geographical spread of wind parks.

Comparing the results with the available onshore resources, dispatchable generation and flexibility from demand and storage, they deducted the margin each of the three ‘sub-systems’ has. A negative margin shows a need to interconnect to regions with more resources.

With the phaseout of fossil-fueled electricity generation the dispatchable generation capacity drops from a level of 64% in today’s generation mix to approximately 25%

The analysis shows that Great Britain and Ireland have a need for import capacity of roughly 30 GW, while continental North Western Europe has a deficit of 25 GW. An overall level of 50 GW-80 GW of interconnection capacity will be required for the North Seas area.

Growth of interconnection capability requires a careful evaluation of the cost-benefit analysis approach. A new methodology to value grid stability could incentivize interconnector capacity.

Current planning practice often limits the level of offshore interconnections to save operational costs.

Today’s main methodology, approved by regulators and the European Commission, compares the cost for a new interconnector with the carbon and fuel cost savings it will bring about.

After 2030, these savings will be less of an incentive when renewables plants – with zero marginal and no carbon costs – are dominating the market.

Interconnectors, however, will still be crucial as they give flexibility in stressed system conditions and periods of scarcity, and thus provide security of supply.

The current methodology does not express this benefit. The task therefore demands a new way of thinking: business cases will have to be redefined to include societal and environmental profits.

More flexibility options

The transition to a decarbonised electricity supply marks the end of dependence on conventional reserves. This will also mean a significantly reduced dispatchable capacity and calls for a steep increase in flexibility options.

With the phaseout of fossil-fueled electricity generation, the dispatchable generation capacity drops from a level of 64% in today’s generation mix to approximately 25%, primarily from hydro and bio, in the 2045 system.

A transition to new, cost-effective flexibility sources such as storage, demand response, power-to-gas/heat, and ancillary services from renewables is already underway.

The use of these new flexibility sources will become essential in the 2045 scenario to ensure a constant, instantaneous supply/demand balance.

Developing a long-term spatial planning strategy and a robust 2045 roadmap for flexibility options will be two of the key steps to meeting the Paris goals

This means that a more realistic and robust potential estimate and roadmap are needed than currently available forecasts, to plan demand response, small-scale storage and large-scale storage by 2045.

This should not be based purely on industry-push figures, but also on making the tradeoff of some of these projects with interconnection levels.

With flexibility options becoming both more significant and affordable, e.g., the demand for interconnection could go down and in turn further increase the need for flexibility options.

However, before this demand can be addressed on the technical level, it will be the collaborative connection between the involved countries and public and private stakeholders that counts.

Developing a long-term spatial planning strategy and a robust 2045 roadmap for flexibility options will be two of the key steps to meeting the Paris goals. Joint strategic planning will secure operational security during and beyond the energy transition.

Michiel Müller is a Managing Director at Ecofys, a Navigant company, and an offshore wind energy expert.

Source: Energypost. Reproduced with permission.

Comments

8 responses to “Europe offshore wind build-out must triple to bring Paris goals within reach”

  1. GlennM Avatar
    GlennM

    Great…
    Only tripling is easy to do, if you had asked me to guess I would have said 10X-20X. So we already have the technology and the ability to solve global warming….just needs commitment. !! RE has tripled in the last 5-7 years so by 2025 the installation rate should be there.

    1. Just_Chris Avatar
      Just_Chris

      I agree, I really don’t want to be complacent but the long term vision coming out of Europe is pretty positive.

      I’d love to see greater development of north Africa, parts of Eastern Europe and parts of the middle east (Turkey and potentially down through Syria and Jordan). Connecting all these grids together and trading energy across that region can only bring more stability and development of Europe’s poorer neighbors. The benefits to having a greater mix of renewable generation spread over a wider geographic region would also have a lot of benefits.

      1. Ian Avatar
        Ian

        This huge off shore wind capacity requirement gives plenty of development scope for floating wind turbines. This technology really seems the way to go.

        1. AuldLochinvar Avatar
          AuldLochinvar

          I don’t care where your ocean is, dispatchable power from wind cannot exist. There is no place in the world where you can command the wind to be stronger or weaker. Even when multiplied by the “production factor”, the nameplate capacity of a wind turbine is not a guide to what it can produce when you need it.
          The whole reason for the success of the Industrial Revolution is that immediate solar power cannot be summoned when you need it. All that dirty fossil carbon is chemically stored fossil solar energy.
          Uranium and thorium are atomically stored reserves of cosmic energy events called supernovae,and they are so compact that at an efficiency of less than 2%, the USA has been getting 20% of its energy, for 38 years without any health effects other than saving the populace from the toxic and greenhouse gas emissions of coal and gas burning, at a rate of about 25 hundred tons of slightly used nuclear fuel per year.

          “Renewable energy” of the wind and solar kinds are popular with the fossil carbon trade, because they are _*no threat*_ to it.

    2. AuldLochinvar Avatar
      AuldLochinvar

      None of these has made any improvement in Germany’s air quality — the toxic pollutants even, never mind the GHGs.
      It is an utter delusion, and its failure even further contributes to the continued dependence upon coal. Visit any site hostile to wind turbines that isn’t pro-nuke. You’ll find denial of Global Warming all over the place.
      I believe that the worthlessness and expense of all that “free” energy convinces people who suffer from or are offended by it, that the problem it’s supposed to cure does not exist.

  2. Mark Roest Avatar
    Mark Roest

    Michiel Müller, Managing Director, Ecofys
    Could you please assess the impact on your results if next-generation safe (no fires, explosions or toxicity) batteries with high performance, long life, and a volume selling price of $100/kWh are available in high volume by 2021?

  3. AuldLochinvar Avatar
    AuldLochinvar

    Please take a look at any record of actual delivered wind power for a year, a month, or even a day. Pick the longest trough below what you reckon is the “average” power. That, for a month or a year, is the amount of storage, in kWH (or megawatt_weeks) that you will need. Note that there are 1000 kW in one MW, and 7×24 hours in a week.
    So a megawatt_week is 168,000 kWh.

  4. AuldLochinvar Avatar
    AuldLochinvar

    We do have a technology alternative to fossil carbon, but it isn’t solar. Coal powered ships swept the sail powered merchantmen and men-o’war from the seas. Wind turbines are big, clever, complicated machines, but they are surely intuitively recognisable as less well adapted to changing demands in a power grid at 50 or 60 Hz AC, than wind and sail are to progress on the sea.
    Wind was defeated.
    Nuclear power was unknown in the entire 19th century until Becquerel and the Curies.

    In capital ships of the leading navies, the most primitive nuclear power technology has entirely replaced oil. The USA’s MSRE – Molten Salt Reactor Experiment, — until Nixon’s budget shut it down, had demonstrated that even thorium, which is non-fissile, can safely be made into a civilian fuel in a reactor that even knows from elementary physics to shut down if overloaded, with a fuse more automatic than the relays in a household’s electric power wiring. The fuel is a solution of fluorides of uranium, thorium, protactinium and in some options neptunium and plutonium, in a solution of fluorides of lithium, beryllium and perhaps sodium.

    Unlike wind turbines, this technology can deliver power ON DEMAND, and because the fuel is liquid, needs neither high pressure coolant, nor a power supply when it is shut down For Any Reason.
    This kind of power resource is very dangerous to exactly one class of “victims” — the fossil fuel industry. It really could replace them. As Needs To Be Done. Wind and Solar are no threat to them whatsoever.

Get up to 3 quotes from pre-vetted solar (and battery) installers.