rss
21

Nuclear: The slow death of fast reactors

Print Friendly

Generation IV ‘fast breeder’ reactors have long been promoted by nuclear enthusiasts, writes Jim Green, but Japan’s decision to abandon the Monju fast reactor is another nail in the coffin for this failed technology.

Image: inhabit.com

Image: inhabit.com

Fast neutron reactors are “poised to become mainstream” according to the World Nuclear Association. The Association lists eight “current” fast reactors although three of them are not operating. That leaves just five fast reactors ‒ three of them experimental.

Fast reactors aren’t becoming mainstream. One after another country has abandoned the technology. Nuclear physicist Thomas Cochran summarises the history: “Fast reactor development programs failed in the: 1) United States; 2) France; 3) United Kingdom; 4) Germany; 5) Japan; 6) Italy; 7) Soviet Union/Russia 8) U.S. Navy and 9) the Soviet Navy. The program in India is showing no signs of success and the program in China is only at a very early stage of development.”

The latest setback was the decision of the Japanese government at an extraordinary Cabinet meeting on September 21 to abandon plans to restart the Monju fast breeder reactor.

Monju reached criticality in 1994 but was shut down in December 1995 after a sodium coolant leak and fire. The reactor didn’t restart until May 2010, and it was shut down again three months later after a fuel handling machine was accidentally dropped in the reactor during a refuelling outage. In November 2012, it was revealed that Japan Atomic Energy Agency had failed to conduct regular inspections of almost 10,000 out of a total 39,000 pieces of equipment at Monju, including safety-critical equipment.

In November 2015, the Nuclear Regulation Authority declared that the Japan Atomic Energy Agency was “not qualified as an entity to safely operate” Monju. Education minister Hirokazu Matsuno said on 21 September 2016 that attempts to find an alternative operator have been unsuccessful.

The government has already spent 1.2 trillion yen (US$12bn) on Monju. The government calculated that it would cost another 600 billion yen (US$6bn) to restart Monju and keep it operating for another 10 years.

Decommissioning also has a hefty price-tag ‒ far more than for conventional light-water reactors. According to a 2012 estimate by the Japan Atomic Energy Agency, decommissioning Monju will cost an estimated 300 billion yen (US$3bn).

India’s failed fast reactor program

India’s fast reactor program has been a failure. The budget for the Fast Breeder Test Reactor (FBTR) was approved in 1971 but the reactor was delayed repeatedly, attaining first criticality in 1985. It took until 1997 for the FBTR to start supplying a small amount of electricity to the grid. The FBTR’s operations have been marred by several accidents.

Preliminary design work for a larger Prototype Fast Breeder Reactor (PFBR) began in 1985, expenditures on the reactor began in 1987/88 and construction began in 2004 ‒ but the reactor still hasn’t started up. Construction has taken more than twice the expected period. In July 2016, the Indian government announced yet another delay, and there is scepticism that the scheduled start-up in March 2017 will be realised. The PFBR’s cost estimate has gone up by 62%.

India’s Department of Atomic Energy (DAE) has for decades projected the construction of hundreds of fast reactors ‒ for example a 2004 DAE document projected 262.5 gigawatts (GW) of fast reactor capacity by 2050. But India has a track record of making absurd projections for both fast reactors and light-water reactors ‒ and failing to meet those targets by orders of magnitude.

Academic M.V. Ramana writes: “Breeder reactors have always underpinned the DAE’s claims about generating large quantities of electricity. Today, more than six decades after the grand plans for growth were first announced, that promise is yet to be fulfilled. The latest announcement about the delay in the PFBR is yet another reminder that breeder reactors in India, like elsewhere, are best regarded as a failed technology and that it is time to give up on them.”

Russia’s snail-paced program

Russia’s fast reactor program is the only one that could be described as anything other than an abject failure. But it hasn’t been a roaring success either.

Three fast reactors are in operation in Russia ‒ BOR-60 (start-up in 1969), BN-600 (1980) and BN-800 (2014). There have been 27 sodium leaks in the BN-600 reactor, five of them in systems with radioactive sodium, and 14 leaks were accompanied by burning of sodium.

The Russian government published a decree in August 2016 outlining plans to build 11 new reactors over the next 14 years. Of the 11 proposed new reactors, three are fast reactors: BREST-300 near Tomsk in Siberia, and two BN-1200 fast reactors near Ekaterinburg and Chelyabinsk, near the Ural mountains. However, like India, the Russian government has a track record of projecting rapid and substantial nuclear power expansion ‒ and failing miserably to meet the targets.

As Vladimir Slivyak recently noted in Nuclear Monitor: “While Russian plans looks big on paper, it’s unlikely that this program will be implemented. It’s very likely that the current economic crisis, the deepest in history since the USSR collapsed, will axe the most of new reactors.”

While the August 2016 decree signals new interest in reviving the BN-1200 reactor project, it was indefinitely suspended in 2014, with Rosatom citing the need to improve fuel for the reactor and amid speculation about the cost-effectiveness of the project.16

In 2014, Rosenergoatom spokesperson Andrey Timonov said the BN-800 reactor, which started up in 2014, “must answer questions about the economic viability of potential fast reactors because at the moment ‘fast’ technology essentially loses this indicator [when compared with] commercial VVER units.”

China’s program going nowhere fast

Australian nuclear lobbyist Geoff Russell cites the World Nuclear Association (WNA) in support of his claim that China expect fast reactors “to be dominating the market by about 2030 and they’ll be mass produced.”

Does the WNA paper support the claim? Not at all. China has a 20 MWe experimental fast reactor, which operated for a total of less than one month in the 63 months from criticality in July 2010 to October 2015. For every hour the reactor operated in 2015, it was offline for five hours, and there were three recorded reactor trips.

China also has plans to build a 600 MWe ‘Demonstration Fast Reactor’ and then a 1,000 MWe commercial-scale fast reactor. Whether those reactors will be built remains uncertain ‒ the projects have not been approved ‒ and it would be another giant leap from a single commercial-scale fast reactor to a fleet of them.

According to the WNA, a decision to proceed with or cancel the 1,000 MWe fast reactor will not be made until 2020, and if it proceeds, construction could begin in 2028 and operation could begin in about 2034.

So China might have one commercial-scale fast reactor by 2034 ‒ but probably won’t. Russell’s claim that fast reactors will be “dominating the market by about 2030” is unbridled jiggery-pokery.

According to the WNA, China envisages 40 GW of fast reactor capacity by 2050. A far more likely scenario is that China will have 0 GW of fast reactor capacity by 2050. And even if the 40 GW target was reached, it would still only represent around one-sixth of total nuclear capacity in China in 2050 ‒ fast reactors still wouldn’t be “dominating the market” even if capacity grows by orders of magnitude from 0.02 GW (the experimental reactor that is usually offline) to 40 GW.

Travelling-waves and the non-existent ‘integral fast reactor’

Perhaps the travelling-wave fast reactor popularised by Bill Gates will come to the rescue? Or perhaps not. According to the WNA, China General Nuclear Power and Xiamen University are reported to be cooperating on R&D, but the Ministry of Science and Technology, China National Nuclear Corporation, and the State Nuclear Power Technology Company are all skeptical of the travelling-wave reactor concept.

Perhaps the ‘integral fast reactor’ (IFR) championed by James Hansen will come to the rescue? Or perhaps not. The UK and US governments have been considering building IFRs (specifically GE Hitachi’s ‘PRISM’ design) for plutonium disposition ‒ but it is almost certain that both countries will choose different methods to manage plutonium stockpiles.

In South Australia, nuclear lobbyists united behind a push for IFRs/PRISMs, and they would have expected to persuade a stridently pro-nuclear Royal Commission to endorse their ideas. But the Royal Commission completely rejected the proposal, noting in its May 2016 report that advanced fast reactors are unlikely to be feasible or viable in the foreseeable future; that the development of such a first-of-a-kind project would have high commercial and technical risk; that there is no licensed, commercially proven design and development to that point would require substantial capital investment; and that electricity generated from such reactors has not been demonstrated to be cost competitive with current light water reactor designs.

A future for fast reactors?

Just 400 reactor-years of worldwide experience have been gained with fast reactors. There is 42 times more experience with conventional reactors (16,850 reactor-years). And most of the experience with fast reactors suggests they are more trouble than they are worth.

Apart from the countries mentioned above, there is very little interest in pursuing fast reactor technology. Germany, the UK and the US cancelled their prototype breeder reactor programs in the 1980s and 1990s.

France is considering building a fast reactor (ASTRID) despite the country’s unhappy experience with the Phénix and Superphénix reactors. But a decision on whether to construct ASTRID will not be made until 2019/20.

The performance of the Superphénix reactor was as dismal as Monju. Superphénix was meant to be the world’s first commercial fast reactor but in the 13 years of its miserable existence it rarely operated ‒ its ‘Energy Unavailability Factor’ was 90.8% according to the IAEA. Note that the fast reactor lobbyists complain about the intermittency of wind and solar!

A 2010 article in the Bulletin of the Atomic Scientists summarised the worldwide failure of fast reactor technology: “After six decades and the expenditure of the equivalent of about $100 billion, the promise of breeder reactors remains largely unfulfilled. … The breeder reactor dream is not dead, but it has receded far into the future. In the 1970s, breeder advocates were predicting that the world would have thousands of breeder reactors operating this decade. Today, they are predicting commercialization by approximately 2050.”

Allison MacFarlane, former chair of the US Nuclear Regulatory Commission, recently made this sarcastic assessment of fast reactor technology: “These turn out to be very expensive technologies to build. Many countries have tried over and over. What is truly impressive is that these many governments continue to fund a demonstrably failed technology.”

While fast reactors face a bleak future, the rhetoric will persist. Australian academic Barry Brook wrote a puff-piece about fast reactors for the Murdoch press in 2009. On the same day he said on his website that “although it’s not made abundantly clear in the article”, he expects conventional reactors to play the major role for the next two to three decades but chose to emphasise fast reactors “to try to hook the fresh fish”.

So that’s the nuclear lobbyists’ game plan − making overblown claims about fast reactors and other Generation IV reactor concepts, pretending that they are near-term prospects, and being less than “abundantly clear” about the truth.

Dr Jim Green is the national anti-nuclear campaigner with Friends of the Earth Australia and editor of the Nuclear Monitor newsletter published by the World Information Service on Energy.  

RenewEconomy Free Daily Newsletter

Share this:

  • Barri Mundee

    As I understand it the prospect for Thorium reactors is little better.

    • Mike

      No. They have never been commercially viable either. You will read plenty of articles that say “India has plans for ….”, “China has plans for ….” but it is all spin

  • Mike

    An extract from Barry Brook’s 2009 editorial in The Australian

    “I’m actually increasingly of the view that Gen III+ reactors will have a major role to play in large-scale nuclear deployment over the next two to three decades, to support the ramp up of the Gen IV fleet (more on this in later IFR FaD posts). But making this point credibly in a short Op Ed like this would have left room for nothing else, and also would have risked been seen as ’same old, same old’ by the nuclear power fence sitters (or those who are ‘weak antis’). Hence an emphasis on Gen IV, to try to hook the fresh fish.”

    http://www.theenergycollective.com/barrybrook/31045/52699

  • Alex Hromas

    Fast breeder reactors require very high heat transfer rates that can only be met by metals, water or gas as used in conventional reactors will not do. The current crop use molten sodium which self ignites at room temperature. Westinghouse is proposing molten lead which would be safer. There is a huge problem with start up, how do you introduce the molten metal into the pumps and heat exchanges. A reactor trip is even worse as you have limited time to drain the metal side of the system before it freezes solid. Looks nice on paper getting it to work reliably day in day out is a bit different

  • Mark Pawelek

    All successful sodium-cooled fast reactors are pool designs. This Japanese Monju reactor, which may close, is a loop design. Loop designs have an advantage of using less sodium, but pool reactors have better safety and fewer places where sodium can leak. Apart from metal cooled reactors using sodium or lead, molten salt fast reactors are also possible. Such as: http://www.moltexenergy.com/

    Thorium reactors are all thermal, not fast. Progress there continues unabated.

    All that happened is one variant of one type of reactor may close because there are better ways to do it. Jim Green should educate himself on nuclear power technology before writing another blog on it.

    • André Balsa

      Progress there continues unabated.”This Japanese Monju reactor, which may close…”
      Nuclear industry funded internet trolls should update their database. The Monju reactor is now OFFICIALLY destined for the nuclear scrapyard.
      All in all this little piece of equipment cost the Japanese $10 billion to build and maintain and now will cost another $2.5 to dismantle and clean up. And that’s not counting the cost of storage of its nuclear fuel, a highly radiotoxic mix of plutonium and uranium that the Japanese have nowhere to store, certainly not in their own territory, the most geologically unstable country in the world.

      I also appreciate the joke about thorium reactors: “Progress there continues unabated.”
      Not a single thorium reactor is being built or operated anywhere in the world, and the various “thorium startups” have collectively not received ONE DOLLAR in funding over the last 10 years.
      Unabated progress? Indeed.

  • Ken Fabian

    Our nuke spruikers will continue to believe that the greatest impediment to their preferred low emissions pathway is the excessive influence of anti-nuclear activism of “green” politics. Meanwhile the greatest body of political support for nuclear has been muted and diverted by Conservative Right politics by the least cost climate change response of denying it’s a problem and it’s commitment to opposing and obstructing a low emissions transition. There is a large body of existing support – or more correctly absence of actual opposition – but it has not been able to be mobilised in any effective manner because of the conflicting and overriding priority of it’s main political advocates of avoiding the costs of climate responsibility.

    Climate and the responses to it are only seen as “green” because mainstream politics refused to face the issue head on – and that “green” framing was reinforced by deliberate and effective efforts to associate it in the public mind with “green” irrationality and extremism. But the reality for nuclear is that there have always been innate problems, and it’s costs – in a world where market forces reign supreme – compared to fossil fuels and more recently to renewables have been the most significant inhibition.

    Ironic then that the choices that mainstream politics generally and conservative politics most of all made, of appeasing public climate concern with “green” energy schemes – almost certainly with a strong underlying component of give-’em-enough-rope cynicism with expectations that renewables would self destruct when put into action – actually became the lifeline that renewables used to drag themselves into real viability.

  • Mallu

    Too bad that the Russians went disproved all the things said in the article, The BN-600 has been running now since 1980 and has reached CF’s over 80% constantly. Its big brother the BN-800 has now been supplying power to the grid since december 2015 and has now reached full power. If its a failed technology it should not work, if it works it cannot be afailed technology. Cant wait for the day when the anti nuke movement will have to explain why this technology works when they have been claiming that it cannot work. http://www.world-nuclear-news.org/NN-Russian-fast-reactor-reaches-full-power-1708165.html

    • André Balsa

      The simple fact is that both the BN-600 and its big brother the BN-800 are based on technology from the late 60’s and can hardly be called Gen-IV reactors, and even calling them “fast reactors” is stretching the technical definition of the term. Last but not least, the BN-600 with its problematic track record is anything but a proven technology, the BN-800 which took 20+ years to build has too short a track record to prove anything at all, and the projected BN-1200 has been “postponed indefinitely”, simply because the technology is too expensive compared to traditional LWR’s.
      So, despite the constant spin and lobbying of the nuclear industry, the article above is proven 100% correct every day by reality.
      2016 saw 161GW of renewable energy capacity installed worldwide. How many GW’s of nuclear energy were commissioned in 2016 and how many GW’s of these were from fast reactors?

      • Mallu

        A factual check on your argument proves it be BS. Oh so the BN-600 is unpriven technology? So if we are to go and check the IAEA database we would find that this “unproven” unreliable” reactor just last made its own production record by setting a capacity factor of 85,6%, not really a hallmark for a failed design now is it?

        Then your BN-800 argument that it took over 20+ years to build is also Trump like BS. Now yes project was started in 1986 byt no construction was done, only construction taht was done in the soviet era was digging up the hole for the plant. The actual contruction took place between 2006-2014
        https://www.iaea.org/PRIS/CountryStatistics/ReactorDetails.aspx?current=451 Then this “Failed BN-800” reactor reached in 2016 operational factor of 96,4% WTF?!!?!?!?!?!?!?! That is impossible we were time and again promised that this techonolgy cannot work, how dare the russians make it work.

        Then there is the MBIR reactor that they have started to construct and the BREST-300 closed cycle reactor that they will start constructing this year(prelimiminary work has begun)

        You also asked how much Nuclear energy was commisioned in 2016? Well i’m going to give the answer but you wont like it. In 2016 10 yes TEN reactors were brought online.And the total figure was 9,47GW af 24/7 power generation.
        Guess what the industry did the same in 2015 another 10 reactors brought online. Also the BN-800 entered comercial operation in 2016 sp thats 789MW of FBR power that was not supposed to exist or even be possible from a technology that we were time and promised would never ever work. 2017? Oh bad news really bad news 10-12 will be conncected, China has already put one in operation, Pakistan started up in March theirs, and then there is Leningrad 2-1, Rostov 4, Akademik Lomonosov in Russia, Tianwan 3 in China, Barakah 1 in the UAE(Damn Koreans building on time and on budget), Kakrapar 4 in India, PFBR(Indias own fast breeder) Oh and Taishan 1 in China and Sanmen 1, Haiyang 1&2 and Fangchenggang 3. Sorry the indistry refuses to die.

        Dont believe me, go check out the IAEA database, every reactor is listed there. Now whatever you do DONT! go and compare reactor startups between 2000-2009 to 2010-present! You wont like that figure. And also must NOT compare grid conenctions from 1990-1999 between 2010-now. You wont like that figure too many reactors have been built during this decade.

        • André Balsa

          Not sure what you are beating your nuclear industry propaganda chest for, Mallu. So there was 16.5x more renewable capacity installed in 2016 than nuclear, and 2017 and actually the next few decades will only see this ratio increase, as solar and wind farm costs come down while nuclear reactor costs go up. That is, assuming somebody is going to continue building new nuclear reactors at all, apart from the Chinese.
          On the other hand, we know for sure that around 400 nuclear reactors will need to be decommissioned in the coming four decades, at an average cost of $2.5 billion each (the Fukushima disaster cleanup is not included in these numbers, nor the cleanup of sites like Hanford or Sellafield). All in all, the nuclear industry could earn > $1 trillion over the next 40 years decommissioning nuclear power plants and cleaning up contaminated nuclear sites.
          That’s the obvious exit strategy for this immoral industry and the sooner the nuclear industry funded online trolls realize it (or rather, their bosses), the better.
          As for fast reactors, thorium reactors, or fairy dust reactors, they all fall into the same category as far as reality is concerned: pure spin with not a hint of substance. As I write this I can see the solar PV panels on the roof of the building opposite where I am. That’s the present and the future of electricity generation, right there. No need to go on the internet to know where the laptop I am using is getting its electricity from.

          • Mallu

            Capacity is not the same as generation, I will share with you a statistic from Greenpeace and I hope you are not a supporter since you will not like this. In 2015 new Nuclear GENERATED more electricity than Solar and wind combined. How can this be possible. Also China is putting the brakes on wind and solar capacity additions since the electricty grid cannot expand. Also Germany’s energiewende has already failed. The goverment even admits this. So is Greenpeace lying when new nuclear generated more new electricity than solar+wind combined or is true?

            https://uploads.disquscdn.com/images
            /8cea95ac8b9821b2c2a946626b89ba8c4e8f129f8af46b1fe833379b49e82f9b.jpg

            As for new nuclear, they just started building Hinkley point C, Finland starts next year at Hanhikivi 1. Russia builds reactors, south Korea builds on time and on budget, see Barakah project(dont it went on time and on buudget.) Then India will expand its capacity massively. Also then there Brazil, Argentina, also Check Republic is expanding their capcity. South Africa, Egypt, Iran, Pakistan, Bangladesh, Hungary etc

            Also green energy investement fell by 18% in 2016 and will decline even more this year.
            https://www.greentechmedia.com/articles/read/global-clean-energy-investment-dropped-18-in-2016-with-slowdown-from-china
            https://www.bloomberg.com/news/articles/2016-11-08/china-scales-back-solar-wind-ambitions-as-renewables-boom-cools
            https://www.forbes.com/sites/jamesconca/2015/10/22/china-shows-how-to-build-nuclear-reactors-fast-and-cheap/#5de2763e5484

          • André Balsa

            The same old propaganda we have been hearing from nuclear industry funded online trolls for the last 15 years…
            Come on! At least realize I am NOT trying to argue with you, because I DON’T HAVE TO. People can look around and see the wind turbines or the rooftop solar PV panels that are becoming a ubiquitous feature everywhere around the world.
            The nuclear industry is dead or dying and it’s not your online propaganda that is going to change facts. Areva is bankrupt, Westinghouse just declared bankruptcy, the Japanese will be busy cleaning up Fukushima for the coming 30 to 40 years and the thorium trolls are still trying to push thorium as the “energy of the future” on YouTube after 10 years of ZERO venture capital fund raising.

            Here is a projection of operating reactors worldwide:
            https://uploads.disquscdn.com/images/4ca3fc1f391f37c4c02984a04b6ec96a7a1a1557da16f0671017454eabfebe7c.png

            Gen IV reactors? Don’t make me laugh.

          • Mallu

            “The nuclear industry is dead or dying and it’s not your online propaganda that is going to change facts.” Then explain to me how can it be that this DYING, DEAD DYING industry has built 46 reactors between 2010-now. Between 2000-2009 the figure was 32 reactors. 6 were ex USSR projects, one in CANDU in Romania and Angra 2 in Brazil that was started in 1976. For a dying industry it suprisingly productive, Between 1990-1999 the DEAD industry built 56 reactors. At the current rate the “dying” industry will build more new nuclear than the two previous decades combined. Damn its strange for a dying industry to be that productive. Areva is not bankrupt they are now owned by EDF. Westinghouse will still be around for atleast a year with the 800 million DIP loan that they got and after that it might go belly up if no one buys it, except they have loan offers left and right.

            Also Explain to me how can the Russian fast reactors be that reliable when we were time and agin promised and told that it is a failed technology and it cannot work? Also What if the Russians crack it? The anti nuclear movement will be in deep shit when thay have to explain that to their followers.

          • Mallu

            BTW nice try with trying to quote Mycle Schneiders statistics, he is pretty known for intelectual dishonesty. He claimed last year that no new nuclear projects were started. A Quick check from the IAEA statisics proved this to be wrong, 3 new official construction starts were begun ie basemate concrete pouring. Then 2 in India and 2 in Iran also began construction work. Also even he cant go around the number of reactors beeing built right now, he just says that ignore those the industry is dying.

          • Mallu