Home » Smart Energy » Why the IEA still gets it wrong on fossil fuels

Why the IEA still gets it wrong on fossil fuels

carbon capture and storage (artist impression)

Energy Post

carbon capture and storage (artist impression)
carbon capture and storage (artist impression)

The IEA (International Energy Agency) has produced a remarkable and alarming report, together with IRENA (International Renewable Energy Agency), warning that “unprecedented” and “unparalleled” efforts are necessary “immediately” and “across all countries” to stave off climate disaster. Yet it still sees a significant role for fossil fuels in 2050. How is this possible? Greg Muttitt, Senior Advisor at NGO Oil Change International, argues that the IEA is using very unrealistic assumptions about non-fossil fuel emissions and carbon capture and storage (CCS) to keep coal and oil in the picture. And it hides the huge emission cuts that would be required after 2050.

Recently we welcomed the first step by the International Energy Agency towards describing how energy would look for the world to meet one of the Paris Agreement goals, to keep warming well below 2°C. Specifically, it looked at emissions being limited enough to give a 2-in-3 chance of staying below 2°C. The report was co-published by IEA and its clean energy counterpart IRENA and commissioned by the German government. The two agencies are also working on a 1.5°C scenario, to be published in June.

Remarkably, the IEA foresees significant coal use in 2050, and gas barely declines from current levels

But there’s a problem with the IEA’s new climate scenario: it describes a slower decline in fossil fuels than our analysis of what the climate science actually requires. Here’s the key table:

rsz_mutitt-1

Remarkably, the IEA foresees significant coal use in 2050, and gas barely declines from current levels. Let’s look at how the IEA reaches this outcome.

The new report starts off well: it takes the carbon budget from the IPCC, as we did in our report The Sky’s Limit: 880 gigatons (Gt) of carbon dioxide can be emitted from 2015 onwards. [1] But the IEA then does three things that inflate the space for fossil fuels within that budget:

  • It understates the potential non-fossil fuel emissions (primarily cement and land use emissions);
  • It assumes a major breakthrough in carbon capture and storage (CCS);
  • It allocates a disproportionate share of the carbon budget to the pre-2050 period – deeper emissions cuts are hidden outside the period of study.

The combined effect is to inflate the emissions from fossil fuels by about 180 Gt – the equivalent to running an extra 1,500 coal plants from 2015 to 2050. Here’s how the math works:

Disappearing non-fossil emissions

The 880 Gt carbon budget is the total cumulative amount of CO2 that can be emitted from all sources in the future. While fossil fuels are the largest source of CO2 emissions, they are not the only source. The others are the calcination reaction in making cement, and land use changes (such as agriculture and deforestation). So an estimate of these other sources must be deducted from the budget, to see how much room is left for fossil fuel emissions.

The IEA’s estimate of land use emissions (zero) is only slightly smaller than ours: we estimate 20 Gt over the century (when you take into account absorption of CO2 as well as emissions – based on a median of IPCC scenarios).

The IEA sees over 600 GW of CCS-equipped power plants being installed by 2050, equivalent to nearly 20% of today’s coal and gas capacity

But the IEA assumes only 90 Gt of cement emissions over the century. Cement emissions are current 2 Gt per year; the IEA scenario projects them peaking in the 2020s and falling to 1 Gt by 2050, due to material efficiency and CCS. Our estimate is 160 Gt, based on an optimistic reading of the IEA’s own figures. [2] The difference can only be squared with a very optimistic assumption on CCS, to which we turn next.

So the IEA assumes that only 90 Gt of the carbon budget must be deducted, leaving 790 Gt for fossil fuels. Our already-optimistic assumptions would require 180 Gt to be deducted, and it could be a lot more than this. So at 790 Gt,  fossil fuels are getting too much of the global carbon budget.

Burying carbon out of sight

The new IEA scenario assumes that CCS will be quickly ramped up in the 2020s, capturing 3 Gt per year of fossil fuel emissions by 2035, not counting the more than 1 Gt per year of cement emissions. [3]

This seems highly unlikely, given that both companies and governments (including the UK and theUS) have pulled out of investing in CCS in the last couple of years. The IEA itself has noted that “deployment has stalled”. [4] A major reason is that CCS-equipped coal or gas power – while obviously attractive to the fossil fuel industry – is significantly more expensive than wind or solar power. The IEA does not explain how it expects a turnaround to occur.

Without these distortions, the IEA would reach the same conclusion that we did in the Sky’s Limit: that there is no room for new fossil fuel development

The IEA sees over 600 GW of CCS-equipped power plants being installed by 2050, equivalent to nearly 20% of today’s coal and gas capacity. Given the long life of power stations, the IEA believes a significant portion of this will be achieved by retrofitting existing plants – which is even more expensive than installing CCS in new plants.

The effect of the IEA’s CCS assumption is to inflate the available carbon budget by around 60 Gt before 2050, and up to 200 Gt over the century, based on an expensive technological fix that has no track record to date.

Hiding emissions cuts off the page

The new report describes the energy system from 2015 to 2050. But the carbon budget stipulates how much the world can emit over all time (until atmospheric concentrations stabilise). So a key part of IEA’s calculation is to decide how much of its 790 Gt budget to allocate before 2050, and how much after. The IEA opts to save just 80 Gt of the budget for post-2050, and 710 Gt for pre-2050. [5]

This would require a sudden change in the rate of emissions once we reached 2050, as the graph shows.

Mutitt-2

Since the scenario forecasts only up to 2050, it understates the emissions reductions – and overstates fossil fuel use – during that period. Like a magician’s trick, the real action is happening out of sight.

If emissions fell at a steady rate after 2020, rather than postponing some reductions until after 2050, they would have to decrease by 5% per year. On this basis, the IEA’s pre-2050 carbon budget for energy would fall from 710 to 635 Gt. Compounding this with our more reasonable assumption on non-fossil emissions, we would start with an all-time budget of 880 – 180 = 700 Gt. Reducing emissions at a constant rate after 2020 would allocated 590 Gt of this to pre-2050. In comparison, the IEA has taken a pre-2050 budget of 710 Gt, and inflated it with CCS to about 770.

The IEA’s three distortions buy an extra 180 Gt for fossil fuels (see table). Over the 35 years of the scenario, that’s the equivalent of an extra 1,500 average-sized coal plants.

(Gt CO2)   IEA Math   More realistic
IPCC carbon budget 880 880
Minus non-fossil emissions -90 -180
Fossil emissions budget 790 700
Minus post-2050 emissions -80 -110
Pre-2050 fossil emissions budget 710 590
Plus pre-2050 CCS +60 +0
Pre-2050 fossil extraction budget 770 590

Wrong conclusions

Without these distortions, the IEA would reach the same conclusion that we did in the Sky’s Limit: that there is no room for new fossil fuel development. Instead, it calls for new investment in fossil fuels – including $200 billion a year of investment in fossil fuel extraction as late as 2050 – investment that will either be wasted or will drive devastating climate change.

Governments and investors routinely use IEA scenarios to inform energy decisions, especially the scenarios in its flagship World Energy Outlook, published every November. But as we’ve seen, even in its new climate scenario, the IEA overstates the future of fossil fuels, due to flawed assumptions and hidden distortions.

It is time for the IEA to come clean. First, the IEA must drop its outdated 450 Scenario and replace it with one in line with Paris. Second, it must fix these distortions, to give a clear picture of the action that’s really needed.

References

The two main publications referred to here are:

  • IEA/IRENA, Perspectives for the Energy Transition, March 2017
  • Oil Change International, The Sky’s Limit: Why the Paris Climate Goals Require a Managed Decline of Fossil Fuel Production, September 2016

1: IEA/IRENA, pp.45-47

2: IEA/IRENA, p.48 vs. The Sky’s Limit, Appendix 2 (based on IEA, Cement Technology Roadmap, 2009)

3: IEA/IRENA, Fig.2.4, p.63 vs. The Sky’s Limit, Appendix 3. The IEA is less optimistic than it used to be –the 2015 World Energy Outlook has 5 Gt per year captured by 2035.

4: IEA, World Energy Outlook, 2016, p.55

Source: Energy Post. Reproduced with permission.

Comments

13 responses to “Why the IEA still gets it wrong on fossil fuels”

  1. trackdaze Avatar
    trackdaze

    Carbon capture already exists.
    Its called coal and as long as you leave it buried deep in the ground its fine.

  2. Miles Harding Avatar
    Miles Harding

    For me, the IEA made more sense to view it as a political organisation.

    Their conslusions are compatible with the business as usual (with tweaks) scenario, demanded by politicians. The fact that we are likely cooked if we don’t leave nearly all of the remaining Fossil Carbon in the ground isn’t compatible with the indefinitte exponential growth model that the financial and politial universe needs, so it’s ignored in favour of the reassuring rubbish we see.

    As a side note, power utilities are not to be trusted with anything they say about CCS. It’s expensive and they don’t want to do it. But, time (to continue business as usual) can be bought by faking it.

    It seems very unlikely to me that storing the CO2 anywhere near the power plant is a good idea. The amount of CO2 produced is enormous; for every box-car load of coal that goes in, a similar box-car load of CO2 will have to be squestered somewhere it isn’t likely to leak from. The only likely sase place will be in depleted gas formations (that probably already have a lot of CO2 in them). This will mean transporting the CO2 long distances, only compounding the finiancial issues associated with CCS.

    1. neroden Avatar
      neroden

      The IEA projections are so untrustworthy that anyone relying on them for investment decisions should be sacked. Already, Lazard, Deutsche Bank, and Bloomberg pay no attention to the IEA projections and make their own projections.

    2. Alastair Leith Avatar
      Alastair Leith

      Exactly, the role of CCS for fossils is to present a theoretical case for their continued businesses in coal and gas extraction. As soon as a plant capturing 100% of CO2, methane (at extraction points, transmission/transport and combustion point) and all the noxious gases and PM exists, the price will be shown to be so prohibitive that they’ll all resist it violently rather than preach it is the future. Oh yeah it already happened in the USA under Obama administration…https://reneweconomy.wpengine.com/coal-industry-kicks-own-goal-as-obama-calls-bluff-on-ccs-99871/

  3. John Saint-Smith Avatar
    John Saint-Smith

    If this was a company prospectus, the IEA would be charged with fraud.

    1. neroden Avatar
      neroden

      Yep.

      But it’s not.

  4. Shane White Avatar
    Shane White

    “For a clear picture of the action that’s really needed”, that will be detailed in the IPCC’s special report on 1.5C available in September 2018: https://www.ipcc.ch/report/sr15/

    What’s needed is obvious though – a war-like stance on emissions; immediate emission reductions so steep they are without historic precedent in all developed nations. Not this slow, gradual installation of renewable energy installations while we ignore transportation, aviation and shipping, and at the same time allowing our governments to continually pursue coal, oil and gas extraction.
    We are currently losing, time is up and Normal is broken.

    1. Joe Avatar
      Joe

      Spot on Shane. For all of our so called intelligence the human species is pretty dumb. We are the only species on Earth that ‘soils its own nest’. We have a planetary emergency on our hands with global warming. We are now at 1.0C above pre industrial measurements and we are looking strong to zoom straight past the 1.5C Paris Agreement target. Of course when you Trump in America trashing all the environmental gains under Obama, when you have Canada with its oil from Tar Sands ( an environmental abomination on many fronts ), when you have Australia exporting coal like there is no tomorrow and also wanting to open The Adani / Carmichael mega coalmine, then it is easy to see that mother Earth is in diabolical trouble. If it is okay for the world’s richest countries to continue business as usual why would anyone believe there is a problem.

      1. Shane White Avatar
        Shane White

        I really liked your last sentence thanks Joe.

        1. Joe Avatar
          Joe

          You are most welcome Shane

  5. Ken Fabian Avatar
    Ken Fabian

    High quality black coal produces 2.86 tons of CO2 for every ton of coal burned. Lower quality coal produces less per ton burned but you need to burn more of it to get the same energy production; you end up with even more CO2 released.

    So there is a lot more CO2 coming out of power stations than coal going in. It’s a gas that requires a whole complex infrastructure to deal with. It will use more energy, ie burn more coal to power the processes involved. How anyone can imagine it can ever be cheap and easy has me scratching my head in bewilderment. No, the principle function of CCS isn’t to reduce emissions, it is rhetorical, a distraction and diversion used to prevent early commitment to tackling the climate/emissions/energy problem with the technologies we actually have now or are in the pipeline (ie Renewables) and excuse yet more delay.

  6. aussiearnie Avatar
    aussiearnie

    Maybe it’s a worthwhile exercise to plot the different forecasts from the IEA over, say, the last 10 years and determine the trend? I did that a few years ago with (US) EIA data and it was fascinating. Unfortunately in Australia historical data is not as easily available…

    1. Alastair Leith Avatar
      Alastair Leith

      post the EIA graphs then!

Get up to 3 quotes from pre-vetted solar (and battery) installers.