Electric utilities typically focus on supply-side solutions to meet peak demand, balance electric loads, and meet customer needs. Demand profiles are assumed to be static, and the grid must be built to meet that load profile.
This approach to building a grid is expensive. The grid will need an estimated $1.5 trillion in investment between now and 2030, largely to meet forecasts for ongoing generation, transmission, and distribution needs. That translates to $50–80 billion dollars every year.
But a much cheaper approach is to make not just supply but also demand highly flexible and responsive to price signals. In a new report released today, The Economics of Demand Flexibility, we show how simple, Internet-connected technologies like smart thermostats to control AC, dryer timers, grid-interactive water heaters, and smart EV charging can drive out 10–20% of those anticipated grid investments, while simultaneously saving customers 10–40% on their electricity bills.
This approach, termed demand flexibility (DF), relies on more-granular electricity rates such as time-varying pricing and residential demand charges that exist today as opt-in choices for 65 million customers, and simple technologies—costing only a few hundred dollars—that can help customers automatically respond to these price signals.
Just as a “negawatt” refers to power not used, “flexiwatts” can be thought of as power demand that is shifted in time across the hours of a day and night to reduce costs. And just as demand-side negawatts are much cheaper than supply-side watts of generation to meet electricity, we show that flexiwatts are a much cheaper way to meet capacity needs than supply-side solutions.
In our recently released report, we quantify the value of flexiwatts for both the grid and for individual customers, by examining its potential to 1) reduce peak demand, 2) shift load to lower-price times, and 3) help integrate renewable energy (e.g., customer-sited solar PV) onto the grid.
Deployed at scale, DF in the residential sector alone can reduce grid costs by $13 billion per year.
By controlling the timing of just two common residential appliances (air conditioners and electric water heaters), U.S. peak demand can be reduced by 8 percent, reducing required infrastructure investment costs by 10–15 percent through 2030.
Demand flexibility offers customers net bill savings of 10–40 percent under rate structures available today.We examined one proposed and three actual residential rates offered by four utilities across the United States, and analyzed the potential of DF to reduce customer bills in each scenario. Across the four utility markets we analyze, this represents over $800 million in potential customer bill savings each year.
Under unfavorable rate structures, DF may accelerate “load defection” and reduce utility revenue.
Utilities should see DF as a golden opportunity to engage customers and reduce system costs. However, if rate structures evolve unfavorably (higher fixed charges, technology-specific “penalties,” reduces compensation for services provided), DF may instead allow customers to meet an increasing portion of their load through rooftop PV; in the Northeast region alone, DF could expand the PV market by 60 percent through 2030 and enable load defection equivalent to nearly 40 percent of residential sales if net metering is reduced or eliminated.
Demand flexibility presents a huge opportunity for system cost reductions and customer engagement. The market is large: there are roughly 65 million residential customers in the U.S. with access to opt-in rates from their local utility that support the value of DF. All stakeholders face both opportunities and challenges in unlocking this market:
Customers are realizing vastly increasing choices in how and when they purchase and consume electricity. Customers can buy electricity from the grid, generate it themselves with distributed generation, avoid it with efficiency, or now shift it with demand flexibility. These new choices give customers more power (pun intended), giving them the opportunity to manage costs more effectively, contribute to a lower-cost and more-resilient grid, or defect from the grid entirely if they choose.
In the context of the U.S. electricity system’s evolution, DF represents a huge, cost-effective resource option for customers, utilities, and third-party innovators alike to reduce costs and create value. Harnessing DF at scale can accelerate the electricity system along the path towards an “integrated grid,” in which customers are engaged and incentivized to reduce both their own bills as well as system costs, and utilities effectively use all available resources to provide clean, reliable, and low-cost electricity.
Authors: Mark Dyson & James Mandel
Source: RMI. Reproduced with permission.
Tasmania's state owned energy utility signs off take deal for what will be the state's…
CSIRO says its innovative, potentially lower cost green hydrogen technology has completed 1,000 hours of…
Long duration vanadium storage technology being trialled in Kununurra, it could be rolled out across…
Energy expert Gabrielle Kuiper on getting the best out of distributed energy resources in the…
Australian households could lower their bills by over two thirds if they fully electrify their…
Updated: Blackout featured prominently in media headlines this week, but not on the grid. But…