Renewables

Wind energy costs set to continue to decline, according to Berkeley Lab

Published by

CleanTechnica

Continued technological advancements are expected to continue reducing the cost of wind energy, according to a new survey of leading wind experts conducted by Lawrence Berkeley National Laboratory.

According to a new article published in the journal Nature EnergyExpert elicitation survey on future wind energy costs, the results of a survey of 163 of the world’s foremost wind power experts were outlined in an effort to better understand the future of wind energy costs and the possible technological advancement.

Specifically, the surveyed experts anticipate wind energy cost reductions of at least 24% to 30% by 2030, and 35% to 41% by 2050 due to larger and more efficient wind turbines, lower capital and operating costs, and other advancements, as laid out below.

The study was led by Ryan Wiser, a senior scientist at Berkeley Lab, and included contributions from other staff from Berkeley Lab, the National Renewable Energy Laboratory (NREL), the University of Massachusetts, and participants in the International Energy Agency Wind (IEA) Wind Technology Collaboration Programme Task 26.

“Wind energy costs have declined dramatically in recent years, leading to substantial growth in deployment,” explained Wiser. “But we wanted to know about the prospects for continued technology advancements and cost reductions.

“Our ‘expert elicitation’ survey complements other methods for evaluating cost-reduction potential by shedding light on how cost reductions might be realized and by clarifying the important uncertainties in these estimates.”

The study looked at three wind applications — onshore, fixed-bottom offshore, and floating offshore. Unsurprisingly, typical onshore projects are expected to remain considerably less expensive than its offshore brethren, while fixed-bottom offshore will be less expensive than floating offshore.

However, according to the report, and as shown below, there are greater absolute reductions, as well as more uncertainty, in the levelized cost of energy for offshore wind as compared with onshore wind.

Despite expected cost reductions, there is still “substantial room for improvement,” and the experts predicted that there could even be a 10% chance that reductions will be more than 40% by 2030, and more than 50% by 2050.

The report also identified five key drivers for wind cost reductions: up-front capital cost (CapEx), ongoing operating costs (OpEx), cost of financing (WACC), performance (capacity factor), and project design life. We have seen up-front costs for wind projects decline over the last few years, at the same time as turbine performance has increased, making wind energy ever more cost-efficient and -effective.

The survey reports that the size of wind turbines (capacity factor) will be a key factor in future declining costs. Average onshore turbine generating capacity is expected to reach 3.25 MW in 2030, while rotor diameter and hub height will also increase (135 meters and 115 meters respectively in 2030).

“Onshore wind technology is fairly mature, but further advancements are on the horizon — and not only in reduced up-front costs,” explained Wiser.

“Experts anticipate a wide range of advancements that will increase project performance, extend project design lives, and lower operational expenses. Offshore wind has even greater opportunities for cost reduction, though there are larger uncertainties in the degree of that reduction.

“Though expert surveys are not without weaknesses, these results can inform policy discussions, R&D decisions, and industry strategy development while improving the representation of wind energy in energy-sector and integrated-assessment models.”

Source: CleanTechnica. Reproduced with permission.

Joshua S. Hill is a Melbourne-based journalist who has been writing about climate change, clean technology, and electric vehicles for over 15 years. He has been reporting on electric vehicles and clean technologies for Renew Economy and The Driven since 2012. His preferred mode of transport is his feet.

Joshua S Hill

Joshua S. Hill is a Melbourne-based journalist who has been writing about climate change, clean technology, and electric vehicles for over 15 years. He has been reporting on electric vehicles and clean technologies for Renew Economy and The Driven since 2012. His preferred mode of transport is his feet.

Share
Published by
Tags: wind energy

Recent Posts

New Year begins with more solar records, as PV takes bigger bite out of coal’s holiday lunch

As 2025 begins, Victoria is already making its mark on the energy landscape with a…

3 January 2025

What comes after microgrids? Energy parks based around wind, solar and storage

Co-locating renewable generation, load and storage offers substantial benefits, particularly for manufacturing facilities and data…

31 December 2024

This talk of nuclear is a waste of time: Wind, solar and firming can clearly do the job

Australia’s economic future would be at risk if we stop wind and solar to build…

30 December 2024

Build it and they will come: Transmission is key, but LNP make it harder and costlier

Transmission remains the fundamental building block to decarbonising the grid. But the LNP is making…

23 December 2024

Snowy Hunter gas project hit by more delays and blowouts, with total cost now more than $2 billion

Snowy blames bad weather for yet more delays to controversial Hunter gas project, now expected…

23 December 2024

Happy holidays: We will be back soon

In 2024, Renew Economy's traffic jumped 50 per cent to more than 24 million page…

20 December 2024