Renewables

Why combining hydro power and floating solar PV may be a good idea

Published by

New research published this week by the US Department of Energy’s National Renewable Energy Laboratory (NREL) has highlighted the “untapped potential” of combining floating solar PV projects and hydropower plants.

According to the NREL’s research, hybrid systems combining floating solar panels and hydropower plants may hold the “technical potential” to produce a “significant portion” of the necessary electricity generated across the globe.

Published in the journal Renewable Energy, the authors determine that adding floating solar panels to bodies of water that are already in use as hydropower stations could yield as much as 7.6-terawatts (TW) of potential electricity each year from solar PV systems alone, or around 10.6TWh of potential annual generation.

Moreover, these figures do not include power generated by the hydropower plants.

“This is really optimistic,” said Nathan Lee, a researcher with NREL’s Integrated Decision Support group and lead author of a new paper published in the journal Renewable Energy.

“This does not represent what could be economically feasible or what the markets could actually support. Rather, it is an upper-bound estimate of feasible resources that considers waterbody constraints and generation system performance.”

In other words, the articles looks only at the theoretical availability of bodies of water used for hydropower, not whether they are technically and economically feasible to develop with floating solar PV.

This technicality of the research is also particularly relevant in the United States, where floating solar PV has remained a nascent technology, despite rapid uptake around the globe. Floating solar PV has become a necessary option in countries and locales where free space is rare, such as in Korea, Japan, and Taiwan, making ground-mounted solar systems both economically and technically difficult.

Several such projects have already sprung up, including the ill-fated project atop Japan’s Yamakura Dam – which was damaged and caught fire a year ago after it was hit by Typhoon Faxai – and a small floating solar plant atop Portugal’s Alto Rabagão dam.

But the potential scope of power generation is significant. The research points to previous NREL work which estimated that installing floating solar panels on man-made US reservoirs could generate approximately 10% of the country’s annual electricity production.

“Floating solar is a new industry enabled by the rapid drop in the price of solar PV modules,” said Adam Warren, director of NREL’s Integrated Applications Center, back in late-2018. “The cost of acquiring and developing land is becoming a larger part of the cost of a solar project. In some places, like islands, the price of land is quite high, and we are seeing a rapid adoption of floating solar.”

Globally, NREL estimates there are 379,068 freshwater hydropower reservoirs which could theoretically host a floating solar PV project in conjunction with the existing hydropower facilities.

This, again, is just theoretical, and the research explains that additional siting data is necessary prior to any potential implementation, as some reservoirs may be dry for parts of the year or may not otherwise be conducive to hosting a floating solar PV plant.

However, the benefits of combining floating PV with hydropower are more than just increased power generation. A combined system would reduce transmission costs by linking into a common substation – rather than requiring separate interconnection infrastructure – and floating solar can reduce reservoir evaporation, thus increasing hydropower generation.

NREL explain that the biggest potential for hydropower and floating solar PV combinations is the balance they provide – with solar power generating significant power during the dry seasons and hydropower generating electricity during rainy seasons. Further, NREL posit that one scenario could see pumped storage hydropower store excess solar generation for use in times of peak demand.

Joshua S. Hill is a Melbourne-based journalist who has been writing about climate change, clean technology, and electric vehicles for over 15 years. He has been reporting on electric vehicles and clean technologies for Renew Economy and The Driven since 2012. His preferred mode of transport is his feet.

Joshua S Hill

Joshua S. Hill is a Melbourne-based journalist who has been writing about climate change, clean technology, and electric vehicles for over 15 years. He has been reporting on electric vehicles and clean technologies for Renew Economy and The Driven since 2012. His preferred mode of transport is his feet.

Share
Published by

Recent Posts

Australia’s biggest coal state breaks new ground in wind and solar output

New South Wales has reached two remarkable renewable energy milestones that signal the growing contribution…

6 January 2025

New Year begins with more solar records, as PV takes bigger bite out of coal’s holiday lunch

As 2025 begins, Victoria is already making its mark on the energy landscape with a…

3 January 2025

What comes after microgrids? Energy parks based around wind, solar and storage

Co-locating renewable generation, load and storage offers substantial benefits, particularly for manufacturing facilities and data…

31 December 2024

This talk of nuclear is a waste of time: Wind, solar and firming can clearly do the job

Australia’s economic future would be at risk if we stop wind and solar to build…

30 December 2024

Build it and they will come: Transmission is key, but LNP make it harder and costlier

Transmission remains the fundamental building block to decarbonising the grid. But the LNP is making…

23 December 2024

Snowy Hunter gas project hit by more delays and blowouts, with total cost now more than $2 billion

Snowy blames bad weather for yet more delays to controversial Hunter gas project, now expected…

23 December 2024