UNSW

UNSW solar discovery sets new silicon efficiency benchmark

Published by

The solar industry has long been focused on bringing down the cost of silicon, but have been stuck on how to do this without creating compromising its quality and thus reducing panel efficiency?

Now, a team of Australian solar engineers from the UNSW say they have found a way to dramatically improve the quality of low-grade silicon, that would both reduce the cost of solar panels and boost their efficiency.

The new technique, patented by UNSW researchers earlier this year, is expected to produce efficiencies between 21-23 per cent, up from the current maximum of around 19 per cent for standard commercial silicon cells.

The key is in the discovery of a mechanism to control hydrogen atoms so they can better correct deficiencies in silicon – by far the most expensive component used in the manufacture of solar cells.

The use of hydrogen atoms to help correct defects in the atomic structure of silicon is not a new concept, but until now, scientists have had limited success in controlling the hydrogen to maximise its benefits – or even in understanding why this happens.

“Our research team at UNSW has worked out how to control the charge state of hydrogen atoms in silicon,” said Scientia Professor Stuart Wenham from the School of Photovoltaics and Renewable Energy Engineering at UNSW. “This process will allow lower-quality silicon to outperform solar cells made from better-quality materials.”

“By using lower-quality silicon to achieve higher efficiencies, we can enable significant cost reductions,” Wenham said.

“We have seen a 10,000 times improvement in the mobility of the hydrogen and can control the hydrogen so it chemically bonds to things like defects and contaminants, making these inactive.”

The UNSW team currently has eight industry partners interested in commercialising the technology, and is also working with manufacturing equipment companies to implement the new capabilities.

The project, which has been generously supported by the federal government’s Australian Renewable Energy Agency, is expected to be completed in 2016.

UNSW still holds the world-record for silicon cell efficiency at 25 per cent, and last week, Scientia Professor and solar pioneer Martin Green, was elected into the Fellowship of the United Kingdom’s prestigious Royal Society.

Share
Published by
Tags: solar PV

Recent Posts

Build it and they will come: Transmission is key, but LNP make it harder and costlier

Transmission remains the fundamental building block to decarbonising the grid. But the LNP is making…

23 December 2024

Snowy Hunter gas project hit by more delays and blowouts, with total cost now more than $2 billion

Snowy blames bad weather for yet more delays to controversial Hunter gas project, now expected…

23 December 2024

Happy holidays: We will be back soon

In 2024, Renew Economy's traffic jumped 50 per cent to more than 24 million page…

20 December 2024

Solar Insiders Podcast: A roller coaster year in review – and the keys to a smoother 2025

In our final episode for the year, SunWiz's Warwick Johnston on the highs and the…

20 December 2024

CEFC creates buzz with record investment in poles and wires, as Marinus bill blows out again

CEFC winds up 2024 with record investment in two huge transmission projects, as Marinus reveals…

20 December 2024

How big utilities manipulate the energy market, even with a high share of wind and solar

Regulator says big energy players are manipulating prices to their benefit. It's not illegal, but…

20 December 2024