The first installment in the U.N. Intergovernmental Panel on Climate Change’s latest scientific assessment on climate science came out on Friday, and it’s loaded with dense terminology, expressions of uncertainty, and nearly impenetrable graphics.
But we’ll make it simple for you. Here’s what you need to know, in number and chart form.
Credit: IPCC Working Group I.
1.6°F: Amount that globally averaged combined land and ocean surface temperatures increased between 1901-2012.
0.54°F to 8.64°F: How high global average surface temperatures are likely to climb by 2081-2100 relative to 1986-2005 levels, depending on future amounts of greenhouse gases in the air. The report found that the global mean surface temperature change by 2100 is likely to exceed 2.7°F relative to the period betwen 1850-1900 in all but one of the emissions scenarios.
Credit: IPCC Working Group I.
The report also found that the past 30 years have been the warmest three decades since instrument records began during the 19th century, and that in the Northern Hemisphere, the past 30 years have likely been the warmest in more than 1,000 years.
Credit: IPCC Working Group I.
10.2 to 32 inches: How much mean global sea level is projected to increase by 2081-2100. The scenario with the highest amounts of greenhouse gases in the atmosphere shows a mean sea level rise range between 21 and 38.2 inches, which would be devastating for numerous highly populated coastal cities at or near current sea levels, from New York to Hong Kong.
Credit: IPCC Working Group I.
By comparison, the previous IPCC report in 2007 projected a global sea level rise of .7.1 to 23.2 inches by 2100, but it did not include the influence of rapid melting of the Greenland ice sheet as well as portions of Antarctica because not enough information was known at the time.
0.07 inches per year to 0.13 inches per year: Rate of global average sea level rise during the 1901 to 2010 period compared to the 1993-2010 period.
The report found that the rate of sea level rise is accelerating as the oceans expand as they warm, and global ice sheets melt.
34 gigatons per year to 215 gigatones per year: Average rate of ice loss from Greenland during 1992-2001 and 2002-2011.
3.5 to 4.1 percent per decade: Annual mean Arctic sea ice extent rate of decline during 1979-2012. The report found that there is “medium confidence” that Arctic summer sea ice retreat and sea surface temperatures during the past 30 years were unusually high in the context of at least the past 1,450 years.
90 percent: Amount of the extra energy in the Earth’s climate system that is going into the oceans, where it is being stored, eventually to manifest itself in warming air temperatures.
11.7 percent per decade: The rate of decline in June snow cover in the Northern Hemisphere during the 1967-2012 period.
Credit: IPCC Working Group I.
365 Gigatonnes: Amount of carbon dioxide (CO2) emissions from fossil fuel burning and cement production since 1750. Emissions from other sources, such as deforestation, yields cumulative manmade emissions of 545 gigatonnes of carbon since 1750.
Because CO2 has such a long atmospheric lifetime, with some molecules lingering in the atmosphere for hundreds of years, scientists have to take into account the cumulative total of CO2 emissions in order to project future warming.
This graphic shows cumulative CO2 emissions and the likely temperature changes associated with them based on the IPCC’s four greenhouse gas concentration scenarios. The bottom line is that holding global warming to at or below 3.6°F is going to be incredibly difficult. The report found that to have at least a 66 percent chance of holding warming to below that threshold will require cumulative CO2 missions from all manmade sources to stay below 1 trillion metric tons of carbon since 1861.
New South Wales has reached two remarkable renewable energy milestones that signal the growing contribution…
As 2025 begins, Victoria is already making its mark on the energy landscape with a…
Co-locating renewable generation, load and storage offers substantial benefits, particularly for manufacturing facilities and data…
Australia’s economic future would be at risk if we stop wind and solar to build…
Transmission remains the fundamental building block to decarbonising the grid. But the LNP is making…
Snowy blames bad weather for yet more delays to controversial Hunter gas project, now expected…