Commentary

Study finds storage prices falling faster than PV and wind technologies

Published by

PV Magazine

Energy storage projects may bring the cost per kWh of a lithium-ion battery down from $10,000/kWh in the early 1990’s to $100/kWh in 2019, according to a new study written by a research team from University of California and TU Munich in Germany, and published in Nature Energy.

Source: PV Magazine
Tesla’s gigafactory near Sparks, Nevada, United States. Source: PV Magazine

This result, if confirmed, would indicate that prices for lithium-ion storage systems are dropping faster than PV or wind technologies, the scientists claim, and that the new combination of solar, wind and storage will soon be able to outcompete coal and natural gas plants on cost alone, due to this price fall.

The achievement of the $100/kWh target, however, may be endangered by a recent lack of investment for basic and applied research, the researchers stated.

According to the research, in fact, US federal R&D spending declined over the past four decades from about 1.2% to 0.8% of the US GDP.

The scientists have developed a two-factor learning curve model to analyze the impact of innovation and deployment policies on the cost of storage technologies, which includes production volumes and patent activity.

This model, according to the research team, explains the recent plunge of battery prices better than both conventional models using economies of scale or a classic experience curve approach, as these usually overestimates prices.

Using this two-factor model the scientists concluded that long-term R&D spending and innovation were crucial to cost reductions.

“Our framework supports prevailing technological learning literature that describes innovation as a more critical component of cost reductions compared to deployment” said the research team in its paper.

Furthermore, the team stressed the need for more research in new storage technologies, claiming there is currently no clear prevailing technology, and that a diverse range of options may outlast lithium-ion batteries.

“There may be room for a number of different battery chemistries that all provide different services on an evolving grid, some providing voltage regulation and frequency control, and others serving long duration outages and providing back-up for buildings and communities”, the researchers said.

Source: PV Magazine. Reproduced with permission.

Recent Posts

Energy Insiders Podcast: Getting the best out of the grid

Energy expert Gabrielle Kuiper on getting the best out of distributed energy resources in the…

29 November 2024

Australian homes could slash energy bills by two thirds by cutting out gas and petrol, AEMC says

Australian households could lower their bills by over two thirds if they fully electrify their…

29 November 2024

In the end, the only blackouts were in the media headlines: But there has to be a better way to do this

Blackout featured prominently in media headlines this week, but not on the grid. But as…

29 November 2024

Trina submits approval for Victoria big battery, as locals campaign against solar and storage projects

Trinasolar and Mint Renewables have now both lodged planning applications for neighbouring big batteries in…

29 November 2024

Australia to reshape manufacturing base as Greens deal excludes fossil fuels from flagship industry policy

Greens make last minute commitment to vote for $22 billion Future Made in Australia policy…

29 November 2024

Andrew Forrest seeks green tick for another wind and battery project as Clarke Creek powers up

Andrew Forrest's Squadron Energy seeks green tick for new wind and battery project in NSW…

29 November 2024