Electric Vehicles

Scottish battery ‘breakthrough’ could charge electric cars in seconds

Published by

New battery technology that could see electric vehicles being charged in a fraction of the time of current standards – and powered by either electricity or hydrogen – has been developed by a team of Scottish scientists.

Battery storage or fuel cell storage – this is a polarising topic for those in the game of developing electric car technology.

While a battery electric vehicle has the advantage of instant torque, quiet ride and zero tailpipe emissions, currently the speed with which an electric car can recharge is at best 30 minutes on a fast charger, or more often overnight if charged through a standard 3 phase outlet.

Hydrogen fuel cell technology – which stores the energy for the car in the form of hydrogen – is also tailpipe emission free, and while theoretically a fuel cell vehicle can be refuelled as quickly as a petrol or diesel vehicle, the technology is far more expensive.

Now, researchers at the University of Glasgow say they have created a flexible solution using nanomolecules that allow energy to be stored and output in the form of either electricity or hydrogen gas.

The breakthrough uses what the researchers are describing as an ‘exotic rust’ – a metal oxide that when added to water, can be charged with electricity.

Using this technology – which is still in prototype stage – EV drivers would be able to refuel cars in much the same way as is done at the petrol station today.

First, the used ‘rust’ liquid is removed using a special nozzle at the pump, then the car is refuelled using a second nozzle to replenish the car’s energy stores.

Professor Leroy Cronin, Regius Chair of Chemistry at the University of Glasgow, has published the breakthrough research in the journal Nature Chemistry and says the ‘flow’ liquid battery could be the answer to making EVs a real contender against fossil-fuel vehicles.

“Energy storage solutions that can act as both batteries and fuel generation devices (depending on the requirements of the user) could therefore revolutionize the uptake and use of renewably generated energy,” wrote the researchers in the journal.

The flow battery would give an EV about the same range as ICE cars, and that it does not age as fast as conventional EV car batteries.

“Our approach will provide a new route to do this electrochemically and could even have application in electric cars where batteries can still take hours to recharge and have limited capacity.

“Moreover, the very high energy density of our material could increase the range of electric cars, and also increase the resilience of energy storage systems to keep the lights on at times of peak demand,” he said in a press release.

Bridie Schmidt is lead reporter for The Driven, sister site of Renew Economy. She specialises in writing about new technology, and has a keen interest in the role that zero emissions transport has to play in sustainability.

Bridie Schmidt

Bridie Schmidt is lead reporter for The Driven, sister site of Renew Economy. She specialises in writing about new technology, and has a keen interest in the role that zero emissions transport has to play in sustainability.

Share
Published by

Recent Posts

German town digs deep for hot rock geothermal energy to replace gas networks

There are hopes techniques borrowed from the oil and gas industry can boost the viability…

19 February 2025

Battle of the batteries: Solar soakers provide some common ground for Australia’s competing energy visions

Labor and the LNP might be approaching the federal election from diametrically opposite ends of…

19 February 2025

End of an era for pioneering wind farm, and a milestone in Australia’s renewables journey

Australia's first privately owned wind farm, which began operations in 2001, will cease in 2027,…

19 February 2025

“Lost confidence:” Government takes control of Whyalla steel works, as hydrogen plan hangs in balance

South Australia loses patience with Gupta's GFG Alliance and seizes control of the Whyalla steelworks,…

19 February 2025

A decade on, farmer revives plans for mini wind farm first proposed to avoid big transmission line

The six turbine wind project was first proposed to avoid a new high voltage power…

19 February 2025

Peter Dutton’s nuclear accounting trick #1: Assume you can halve the cost of nuclear power

How to make nuclear look not so expensive: Trick #1: Assume a cost for reactors…

19 February 2025