Regular RenewEconomy readers will be aware of several Aussie trials and proposals to use hydrogen to transport and store energy. Discussion of hydrogen’s drawbacks has been much less prominent, with the notable exception of Tim Forcey’s articles warning against fossil-fuel interests using technology’s “green” image as a fig-leaf to continue polluting activities.
Renew (no relation to RenewEconomy) recently prepared a discussion paper assessing hydrogen’s prospects across various potential uses. Results are summarised in the following table, and highlights are presented below.
Potential use of renewable hydrogen | Notes |
Energy exports | Yes, e.g. to energy-poor Japan. Possibly in the form of ammonia. |
Inter-seasonal energy storage | Yes. Supplementary supply during cloudy, calm weeks. |
Industrial, e.g. producing steel | Yes. Longer-term priority. |
Road transport | Only in niche roles. Battery electric vehicles are much more efficient. |
Main electricity supply | No – more direct use of renewable generation is more efficient. |
In homes and businesses | No – efficient electric appliances are much more economic. |
A major drawback of hydrogen is that it involves several processing steps, and much energy is wasted in each one. Let’s consider propelling a Fuel Cell Electric Vehicle (FCEV) such as the Toyota Mirai, versus its Battery-Electric Vehicle (BEV) equivalent. Starting with renewable electricity, only one-third makes it to the FCEV’s wheels in the most optimistic scenario. With a BEV instead, one-half to three-quarters of the original energy is transferred to the vehicle wheels. The following chart illustrates how much energy is lost in each step.
Figure 1 Electric Vehicle Efficiency: generation to wheelsSince hydrogen is a relatively inefficient carrier of renewable electricity, it requires more generators to supply it. For example, five solar panels in Sydney can propel a BEV on daily 30km round-trip commutes on an annual average basis. On the other hand, an FCEV requires around 14 panels – 2.8 times as many as the BEV.
Figure 2 No. of panels required to propel FCEV & BEV 30km/dayJapan is energy-poor and relies almost entirely on imports of fossil fuel and uranium. The nation has little suitable land available to host solar farms or wind farms. Japan’s response is a firm strategy toward hydrogen, which states that by 2030 the country will develop supply chains to import 300,000 tons of hydrogen annually. The clear intent is to import multi-use hydrogen generated from renewable energy rather than from fossil fuels, to meet Japan’s commitment to the Paris agreement. Korea and China may similarly import hydrogen.
In contrast to Japan, the Pilbara region of Western Australia currently has an enormous, high-quality renewable energy resource but no significant market. Local electricity consumption is relatively small, and the remote area has no transmission line to Perth, let alone the eastern states.
A massive project[1]is in early-stage development to produce hydrogen in the Pilbara via electricity generated by wind and solar farms. This will be exported as either liquefied hydrogen or in the form of ammonia. The following chart estimates the energy lost at each stage, for three different options plus a reference case generating solar electricity locally in Japan.
Figure 3: Efficiency of renewable electricity supply to Japan
Options (a) and (b) are further illustrated in the following diagram.
Figure 4: Two options to supply renewable, stored electricity to 1 million Japanese homes.Option (b) seems quite attractive. Although it requires a larger solar farm than option (a), it has several advantages. Land in the Pilbara is cheap and abundant compared to Japan, and the ammonia could be stored for a long time.
Several practicalities are noted in our discussion paper, including:
Hydrogen produced from renewable energy is a renewable, storable fuel but it has several drawbacks and should only be pursued when more direct uses of renewable energy are impractical. Australia should not devote resources to a network of hydrogen refuelling stations because battery charging is much more efficient. Hydrogen should not be piped into homes and businesses because efficient electric appliances are much more economic. And we should be wary of hydrogen proposals used as a fig leaf to continue fossil-fuel business-as-usual.
Exporting renewable hydrogen to countries with poor renewable resources is a great opportunity and has the potential to replace our fossil fuel exports.
For deeper analysis and references, please refer to our discussion paper.
The year 2024 was the world’s warmest on record globally, and the first calendar year…
Project Green Poly must be approved by the environment minister to go ahead.
New modelling corrects "three huge mistakes" underpinning traditional solar PV projections and smashes the myth…
Greener production of steel and key battery ingredients has been targeted in a major funding…
Labor and the coalition are sharpening their political attacks as party leaders heat up the…
A huge solar farm and four-hour battery project proposed for the North Burnett Region near…