Renewables

Australian researchers say simple ‘twist’ could be key to world’s thinnest solar cells

Published by

A simple twist to some of the world’s thinnest materials could be the key to the creation of a new range of flexible and lightweight solar cells, a group of Australian researchers has found.

The research, published in the journal Cell Reports Physical Science, has been undertaken by engineers from the Australian National University and explored the behaviour of super thin materials, just two atoms thick.

They found that these materials had significant potential to help control a wide range of technologies, including LED lights, sensors and solar cells.

In the paper, the researchers detail how ‘twisting’ the angle between two materials has the ability to change their behaviour – including being able to control their ability to convert sunlight to electricity.

“This study essentially provides a bit of a how-to guide for engineers,” the lead author of the report, Mike Tebyetekerwa, said. “We’re looking at 2D materials that have just two atom-thin layers stacked together.”

“This unique structure and large surface area make them efficient at transferring and converting energy.”

The materials are so thin, 100,000 times thinner than a sheet of paper, that they are described as “2D” materials. But the researchers say their potential is substantial, and when multiple layers work together, they have the ability to produce useful amounts of electric current when exposed to light.

Co-author of the study, Dr Hieu Nguyen, said that by matching appropriate super-thin materials together, their behaviour could be tuned, making them suitable for use in a range of emerging technologies.

“It’s an exciting new field. Simply twisting the two ultrathin layers can dramatically change the way they work,” Dr Nguyen said.

“The key is to carefully select the matching pair and stack them in a particular way.”

The research team has produced earlier findings that quantified the potential for the nanoscale materials to provide a useable supply of electricity, finding that they could provide comparable voltages to other conventional solar cell technologies.

“These monolayers are hundreds of thousands times thinner than a human hair. If they were coated on your car windows, cell phone screen, or even your watch, you would barely see them,” Dr Nguyen said at the time. “One day a car window or a cell phone screen could harvest sunlight to help power itself.”

“This is important as it gives scientists a target to work towards in terms of electrical output. We cross-validated our calculations using other bulk semiconductor materials. It is exciting that something almost invisible to the naked eye can still absorb sunlight and efficiently convert it into electricity,” Dr Nguyen added.

Michael Mazengarb is a Sydney-based reporter with RenewEconomy, writing on climate change, clean energy, electric vehicles and politics. Before joining RenewEconomy, Michael worked in climate and energy policy for more than a decade.
Michael Mazengarb

Michael Mazengarb is a Sydney-based reporter with RenewEconomy, writing on climate change, clean energy, electric vehicles and politics. Before joining RenewEconomy, Michael worked in climate and energy policy for more than a decade.

Share
Published by

Recent Posts

Hunter Valley coal mine gets second life as motorsport park

An historic coal mine is being transformed into Australia’s first dedicated recreation resort park for…

29 March 2024

Could $1 billion actually bring solar manufacturing back to Australia? It’s worth a shot

By 2050, solar should provide most of our electricity – but only if we have enough…

28 March 2024

Hydro Tasmania on the hunt for a new CEO amid political and renewable turmoil

Tasmanian utility begins hunt for new CEO, following the news that current chief will step…

28 March 2024

Capacity Investment Scheme needs to set high bar for communities hosting renewables

Without exception, the CIS should encourage projects that do good community engagement, with good environmental…

28 March 2024

Australia’s biggest coal generator teams up with SunDrive to make solar at Liddell

AGL signs MoU with Cannon-Brookes backed PV innovator SunDrive to explore "first of its kind"…

28 March 2024

Solar ducks and big batteries: How Alice Springs grid could run five hours a day with no fossil fuels

Alice Springs may be able to run on 100 pct renewables for an average five…

28 March 2024